Role of blood cells in leucine kinetics across the human kidney.

نویسندگان

  • Giacomo Garibotto
  • Rodolfo Russo
  • Antonella Sofia
  • Monica Vettore
  • Laura Dertenois
  • Cristina Robaudo
  • Giacomo Deferrari
  • Michela Zanetti
  • Paolo Tessari
چکیده

To evaluate the role of blood cells in interorgan amino acid transport and in the estimates of regional protein turnover, we studied the effects of plasma vs. whole blood sampling on regional leucine kinetics in postabsorptive humans. Studies were carried out by combining the arteriovenous difference technique with the measurement of [14C]- and [15N]leucine isotope exchange across the human kidney, the splanchnic area, and the leg. In the kidney, whole blood-derived rates of leucine-carbon appearance, disappearance, and net balance (NB) were greater (by 3-15 times; P < 0.035) than those calculated in plasma. In addition, the net leucine-carbon (i.e., protein) balance across the kidney was negative in whole blood (-5.6 +/- 1.3 micromol/min x 1.73 m2, P < 0.01 vs. 0) but neutral in plasma [-0.24 +/- 1.33, P = not significant from 0; P < 0.01 vs. whole blood]. A net leucine transport out of renal cells was shown in blood but not in plasma. In contrast, rates of leucine-carbon appearance, disappearance, NB, and net transport, in both the splanchnic area and the leg, were similar in whole blood and plasma. These data suggest that blood cells play a key role in leucine transport out of the kidney and, consequently, in the leucine-derived estimates of renal protein degradation and NB, which is at variance with what is observed across the splanchnic organs or the leg. These data also emphasize the need for complete whole blood arteriovenous measurements to accurately estimate protein turnover across the kidney.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Studies on electron beam induced DNA damage and repair kinetics in lymphocytes by alkaline comet assay

Background: Exposure to ionizing radiation is known to induce oxidative stress followed by damage to critical biomolecules like lipids, proteins and DNA through radiolysis of cellular water. Since radiation has been widely used as an important tool in therapy of cancer, the detailed investigation regarding the DNA damage and repair kinetics would help to predict the radiation sensitivity of cel...

متن کامل

Growth Kinetics, Characterization, and Plasticity of Human Menstrual Blood Stem Cells

One of the readily available sources of mesenchymal stem cells (MSCs) is menstrual blood-derived stem cells (Men-SCs), which exhibit characteristics similar to other types of MSCs. This study was performed to determine the growth kinetics, plasticity, and characterization of Men-SCs in women. During spring 2014 in the southern Iranian city of Shiraz, menstrual blood (5 mL) was obtained from 10 ...

متن کامل

P-157: Polymorphic Core Promoter GA-repeats Alter Gene Expression of The Early Embryonic Developmental Genes

Background: We examine the GA-repeat core promoters of MECOM and GABRA3 in human embryonic kidney-293 cell line and show that those GA-repeats have promoter activity,and those different alleles of the repeats can significantly alter gene expression.We propose a novel role for GA-repeat core promoters to regulate gene expression in the genes involved in development and evolution. Materials and M...

متن کامل

The effects of Artemisia deserti ethanolic extract on pathology and function of rat kidney

Objectives: Medicinal plants played an important role in human health. The kidney is a major organ for elimination the additional materials of body. Some of metabolic waste products are excreted through the kidneys, give us useful information about kidney health. Therefore, the aim of this research was to study the effects of A. deserti flowering tips extract on kidney. Materials and Methods: T...

متن کامل

The Expression of Heme Oxygenase-1 in Human-Derived Cancer Cell Lines

Background: Heme oxygenase-1 (HO-1) is a cytoprotective and antiapoptotic enzyme, which has been involved in maintaining cellular homeostasis, and plays an important protective role by modulating oxidative injury. Up-regulation of (HO-1) has contributed to tumorogenicity of some cancers. In this study we investigated the expression pattern of the HO-1, in five different human-derived cancer cel...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • American journal of physiology. Renal physiology

دوره 283 6  شماره 

صفحات  -

تاریخ انتشار 2002